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A method is described which prevents penetration when particle methods are used to 
simulate streams of fluid impinging on each other. The method does not produce dissipation 
but it does produce extra dispersion. 0 1989 Academic Press, IIIC. 

1. INTRODUCTION 

A technique for the elimination of penetration and mixing in particle methods 
like SPH [2, 3, 51 will be proposed and studied. The results may also have applica- 
tion to free-Lagrangian methods which are similar to SPH in that they do not use 
a grid, but determine the dynamics from information at a set of moving points. 

The penetration we refer to occurs because SPH does not require that the 
velocity field be single valued. As a consequence, two or more particles, with dif- 
ferent velocities, may occupy the same position. For low Mach number flows with 
smooth velocity fields this is seldom a problem, but in high Mach number flows the 
problem is severe. It can, however, be overcome by the use of an appropriate 
viscosity [ 1, 43 so that, in high Mach number collisions of gas clouds, the penetra- 
tion is limited to about two resolution lengths. 

The simulation of high Mach number flows is therefore in a fairly satisfactory 
state, but even there it would be a clear advantage, especially in problems involving 
re-expansion from a compressed interfacial state, to produce sharper interfaces. In 
subsonic flows the situation is far less satisfactory. Although, in general, opposing 
streams do not mix substantially, even in the absence of viscosity, mixing and 
disorder do occur. If the artificial viscosity is retained the disorder can be reduced, 
but at the price of decreasing the Reynold’s number beyond acceptable limits. 

It is natural to try and remedy this difficulty by modifying the interactions 
between particles. However, a series of experiments I performed using assignment 
functions (kernels) with different shapes designed to prevent particles mixing 
proved futile. They were often successful in one dimension but in two or three 
dimensions the particles can evade barriers by moving around each other. I dis- 
cussed this problem with Jerry Brackbill who suggested that the procedure in FLIP 
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[6] might be effective. In that method the rates of change of particle velocity, 
thermal energy, and position are determined from grid-based calculations. The 
result is that the velocity of a particle calculated from the momentum equation is 
not the velocity used for changing its position. Since the position-changing velocity 
is interpolated from the grid, the movement of the particles must vary smoothly 
across a cell and, in particular, no particles can penetrate because the velocity is 
single-valued. This idea, that the velocity from the momentum equation and the 
velocity used for changing position need not be identical, is the basis for the 
algorithm discussed in this paper. 

2. THE EQUATIONS OF MOTION 

The SPH equations of motion for an inviscid fluid can be written [S] 

dr,- 
dt -‘, 

and the density pa is determined either from 

or from 

p,=C mb wab. 
b 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

In these equations mb, vb, and ub are the mass, velocity, and thermal energy per 
unit mass of particle 6. The pressure P, at particle b is determined through an 
equation of state depending on ub and pb. W,, E W(r, - rb, h) is an interpolating 
kernel which is zero or negligible for Ira-rbl greater than a few h, where h is a 
length that controls the width of W and the resolution of the numerical scheme. 
V, denotes a gradient with respect to the coordinates of particle a, and vOb = v, - vb. 
There are other possible forms for (2.1), but that shown has the advantage of 
simplicity and exact linear and angular momentum conservation if W is a 
spherically symmetric function. The energy equation (2.2) can also be written in 
different ways [S]. The density is usually calculated using (2.5) but there are some 
advantages in using (2.4). In this paper we use (2.1), (2.2), and (2.5) and modify 
(2.3). 
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The aim is to modify (2.3) so that particles that are close together will move with 
nearly identical velocities. In addition, we want linear and angular momentum to 
be conserved exactly, and we want the correction term to be galilean invariant. 
These aims are achieved by replacing (2.3) by 

(2.6) 

where pnb = i(p, + pb) and W* is a kernel which need not be the same as W but 
we assume it is symmetric in a, b, and, like W, it has dimensions of l/volume. 

From (2.6) we can deduce immediately that 

which shows that the centre of mass moves correctly. Furthermore, 

dr 
Cm,v,x-!=O 
0 dt (2.8) 

and, since the momentum equation implies (assuming W,, is symmetric in a, 6) 
that 

dv 
Cm,r,x2=0 

dt 

it follows that angular momentum is conserved. A simple result worth noting is that 
a bunch of particles each with the same constant velocity will be unaffected by 
changing (2.3) to (2.6). 

On first meeting the replacement of (2.3) by (2.6) the usual first reaction is that 
it is a very strange thing to do (which may be true) and the second reaction is that 
it must produce dissipation (which is certainly wrong). To make it touch more 
familiar ground we now examine its effect on wave propagation. 

3. WAVE PROPAGATION IN ONE DIMENSION 

We consider an infinite line of particles initially in static equilibrium. We assume 
the particles have equal mass m and are equi-separated. We use the distance 
between nearest neighbours as the unit of length, and to simplify the analysis we 
assume the gas is isothermal and write P = PC*, where c is a constant. The position 
of particle j is then j and its initial density is p = m. 

To study small oscillations we consider time variations exp( - iot) and Fourier 
analyse the spatial variations: 

x, = a + qeiK”, pa = p + re’““, and 0, = veiKCI. (3.1) 
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Linearizing (2.1) and (2.5) we get 

and 

a web 
6p, = m c (6x, - 6x,) - 

b ax, . 

From (3.3) and (3.1) 

a wab r=mqC(l-e’“(b-a))- 

b ax, . 
(3.4) 

To keep the analysis simple, without losing essential features, we replace summa- 
tions by integrations according to the rule 

Cda-b)-jm g(u)& -Cc 

and we use the gaussian kernel 

1 
Web=- 

hJ;I 
exp[ -(a - b)=/h2]. 

(3.5) 

Relation (3.4) then becomes 

r = -iKmqe-h2K214. 

Applying these results and approximations to (3.2) we find 

(3.7) 

- iwv = -2qC2K2e-h2K214 + ~ iKe - h2K2/4. (3.8) 

Substituting for r in (3.8) using (3.7) gives 

_ imv = -q,3x2[2e~h~“~/4 _ e-h2~212]. (3.9) 

To complete the analysis we need the relation between position and velocity. If we 
use the standard relation (2.3) then 

-iwq=v, (3.10) 

and substitution in (3.9) gives the dispersion relation 

w2 = C2K2[2eph2s‘2/4 _ e-h2K2/2-j 

= C2K2 + O( 2) for hrc$l (3.11) 
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If, instead of (2.3), we use (2.6) with W* = W, (3.10) is replaced by 

-hq=u[l + (e-h2K*‘4- l)], (3.12) 

where the term, (exp( -h2rc2/4) - l), comes from the summation in (2.6). The 
dispersion relation is now 

= C2K2 + O( K”) for hK4 1. (3.13) 

The use of (2.6) instead of (2.3) increases the dispersion without introducing any 
dissipation. 

The absence of dissipation can be deduced in a more fundamental way by noting 
that the term added to v, in (2.6) does not change the time parity, i.e., replacing 
t by - t and v by -v leaves the equations of motion invariant. 

Because the dispersion relation is altered so is the group velocity. From (3.13) we 
find that the group velocity for long wavelengths is reduced, and information is 
therefore transmitted more slowly than when (2.3) is used. 

This relationship between information transfer and the position-changing rule 
can be seen easily in an extreme case. Suppose two people exchange information 
across an ice rink by writing messages on pucks and projecting them towards each 
other at constant velocity (this is a thought experiment and we allowed to assume 
zero viscosity!). If (2.6) was a law of nature, and two pucks (with diameter +h) 
passed within h of each other, they would move more slowly and the messages 
would therefore be transmitted more slowly than if (2.3) applied. No dissipation 
would occur because there are no forces, and the momentum equation informs us 
that the momentum of any puck is constant. 

An approximation to (2.6) useful in qualitative discussions of one dimensional 
motion is obtained by expanding ub - u, in a Taylor series and changing the sum- 
mation to integration. We find the approximate equation 

dx i a5, 
4vo+2axZ u’W(u)du. 
dt s 

(3.14) 

Since, if W(u, h) is an even function of u, and W k 0, 

s u2 W(u) du = /?h2, (3.15) 

where /? is a positive constant (3.14) can be written 

(3.16) 

The effect of (2.6) on a Fourier mode with rch < 1 is easily deduced from (3.16). 
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It has already been pointed out that W* in (2.6) need not be the same as W. We 
can use this flexibility to improve the dispersion properties for long wavelength 
modes.. For example if we choose W* to be super-gaussian 

1 
W(u,h)=pe- 

for which 

I 

co 

W(u, h)eiKu du = e-h2Kz’4 
-m 

then (3.12) is replaced by 

(3.17) 

(3.18) 

(3.19) 

and the dispersion relation becomes 

02=C21C2~2e-h2”2/2-e~3h2”2/4 
,(l+T) ’ 

= c21c2 + O(d) if hK+ 1. (3.20) 

which is similar, for long wavelengths, to (3.11). For this kernel relation (3.16) is 
replaced by 

dx a40 
-&v,-yh4s, 
dt 

(3.21) 

where y is a positive constant. The super-gaussian kernel therefore ameliorates the 
effect of (2.6) on smooth flows. If the velocity field changes rapidly with position, 
as will occur near the interface between colliding fluids, (2.6) with the super- 
gaussian kernel will still act to prevent penetration. 

4. TIME STEPPING 

There are many possible forms of time stepping. For the experiments described 
in the text section a simple predictor-corrector scheme, which conserves linear and 
angular momentum exactly, is used. To describe this scheme it is convenient to 
write Eqs. (2.1) and (2.2) as 

dv 2- 6 
dt -F, and 

dt- - Qa, 
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and Eq. (2.6) as 

dr 
A = v, + Av, =: v,, dt 

where Av, denotes the summation term in (2.6). Superscripts 0, 1 denote current 
and new values, respectively. We predict according to 

and 
fd = rz + 6t V,. 

Values of p, F, and Q at the midpoint are then estimated using 

(4.3) 

and similar expressions for vi” and u:” (which with pi/‘, and the equation of state, 
gives PA’“). We then correct according to 

v; = v: + 6t F;“, u; = u: + bt Q;“, (4.4) 

and 

rt = rz + t&(Vf, + Vz). (4.5) 

Because of the form of F, it is easy to see that 

and linear momentum is conserved. Furthermore, since 

c m,ri’* x Fi12 = 0, 
a 

while 

1 m,vi x VA = 0 = C m,vf x Vz, 
a cl 

we infer from the first of (4.4) and (4.6) that 

c rn,rAl2 x vz = 1 m,rt’2 x vz. 
a 

The first of (4.7) and (4.8) reduce the LHS of (4.9) to 

(4.6) 

(4.7) 

(4.8) 

(4.9) 
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and the second of (4.7) and (4.8) reduce the RHS of (4.9) to 

and the conservation of angular momentum is established. In practice a variant of 
the above procedure halves the computation time. Instead of predicting with Fjj and 
Qz we use the midpoint values from the previous time step. This introduces errors 
of O(&)3 in the final values of v. The overall algorithm has second-order errors in 
time and space (i.e., the errors are O(&)* and O(h)*). 

When we wish to describe shock phenomena we use an artificial viscosity which 
involves adding to 

in the momentum equation and energy equation the term 

(@LbGb + Pi:bYLb. (4.10) 

In (4.10), Cab= i(c,+ cb), where c, is the speed of sound at particle a, ijab = 
$ (Pa + Pbh and if vab . rab < 0, 

iub = _ (‘ab ’ rab)h . 

rzb + o.olh*’ 
(4.11) 

otherwise cob = 0. In (4.11), vab = v, - vb and rab = ra - rb. 
The usual form of an SPH program requires a subroutine to calculate the p’s and 

a subroutine to calculate the F’s and Q’s. These subroutines require about 80% of 
the total CPU in a fluid dynamics program without self gravity. Since we require 
dvf, in (4.5) an extra subroutine similar to that for p must be used. This increases 
the computation time by about 30%. 

The rule for the time step 6t is to choose 

6t = 0.3 Min(Gt,, Jt,) (4.12) 

where 

and 

6tz = Min (h/(C, + 1.2CrC, + 1.28 Mj3X cob)). 
II 

The form of &, is obtained by combining the Courant condition with stability 
conditions derived by observing that the artificial viscosity produces diffusion. 
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5. NUMERICAL TESTS 

The tests described here use a 2-dimensional form of SPH. The first test (a) com- 
pares the penetration resulting from two identical streams meeting head on when 
(2.3) and (2.6) are used. Test (b) shows that when (2.6) is used shock phenomena 
are still treated correctly. Test (c) was designed to determine if the use of (2.6) gave 
false results for an astrophysical problem where symmetry and angular momentum 
should be preserved. The tests use the kernel based on M, splines [S] which has 
continuous second derivatives. 

b NMODEL= IO N= 2000 H= 0090 TIME= 1 7674E-01 

FIG. 1. The collision of two streams each with speed=Mach 1, and each with initial density= 1. 
(a) shows the results using standard SPH with no artificial viscosity. (b) shows the results when (2.6) 
is used. 
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NMODEL= 60 N= 2000 H= 0 090 TIME= 4.9370E-01 

a 

X POSITION 

NMODEL= 60 N= 2000 H= 0.090 TIME= 4 9370E-01 

u-l- 

N 
1 2 3 4 5 

X POSITION 

FIG. 2. The same configuration as in Fig. 1 with (2.6) and an artificial viscosity (a = 1, /I = 2). The 
exact results are shown by continuous lines. The edge effects arise because the streams are of finite size: 
(a) density, (b) thermal energy, and (c) velocity. “Wall heating” is the cause of the peak in the thermal 
energy and the resulting dip in the density. 
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NMODEL= 60 N= 2000 H= 0090 TIME= 4 9370E-01 

X POSITION 

FIGURE 2-Continued 

If O<r<h then 

else, if h < r < 2h, 
3 

11 

h* W= 0. 

(a) Penetration in collisions 

In this test there are two streams. For x < 3 the stream initially has velocity = 1 
(Mach 1) and p = 1 while for x > 3 the velocity = -1 and p = 1. The particles have 
equal mass, they are separated initially by 0.06 and h = 0.09. The initial thermal 
energy is l/(y - 1) and y = 1.4. The particles for x < 0 are displaced in the y direc- 
tion to make the test more demanding. The artificial viscosity is zero. 

In the first frame of Fig. 1 we show the results when (2.3) is used. There is sub- 
stantial penetration. In the second frame (2.6) has been used. There is now no 
penetration. Experiments with initial velocities up to Mach 10 give the same result. 
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(b) Shocks 

The simplest shock configuration is the same as for (a). We use the viscosity 
given by (4.10) with c1= 1, p = 2. The results are shown in Fig. 2, and they are 
similar to those found when (2.3) is used. No attempt has been made to fine tune 
the viscosity since the appropriate form of viscosity to use with (2.6) is an open 
question. The results are in satisfactory agreement with the exact results and are 
similar to those obtained by the Lax-Wendroff method. However, to the reader 
used to the high accuracy which can be achieved for shocks using TVD or other 
monotonic schemes, these results will appear crude. The ripples on the profiles may 
be due to the initial configuration since experiments on a steady shock, using SPH, 
show that setting up the theoretically exact discontinuous initial conditions gives 
large ripples, but simulating a piston moving into the gas (which theoretically gives 
the same profile) gives a smooth profile with no ripples. 

Similar accuracy was found for flows initially at Mach 10. 

(c) Particles in Orbit 

A typical problem that can be tackled with SPH is the evolution of low viscosity 
disks in orbit about a central mass. In this problem it is important that, in the 
absence of pressure forces, the solution technique guarantees that the particles will 
move on accurate orbits. This can be tested by setting up rings of particles with 
initial conditions which should keep each particle in a circular orbit. Errors arising 
from (2.6) will show up in the distortion of the rings. For the test described 20 rings 
each of 100 particles are used. Pressure and artificial viscosity were turned off. The 
momentum equation then takes the form 

dv,- ra 
dt - -z’ 

where we assume the central mass = 1. Density is calculated using (2.5), and (2.6) 
is used to change the particle positions. The inner ring is at radius = 1, and the 
rings are separated by 0.03; h = 0.09 and the particles have equal mass. The density 
for each particle at an early stage of the motion is shown in the first frame of Fig. 3 
and, after one rotation of the inner ring, in the second frame, two points emerge. 
First, since each density symbol is the superposition of the density symbol of 100 
particles in one ring, the rings remain highly axisymmetric. Loss of symmetry would 
show up as fuzziness and broadening. The second point is that the density varies 
only very slightly. The maximum effect is on the outer edge. This is a good result 
because it might have been expected that, with the density falling off rapidly near 
the edge, something untoward might have happened to the summation term in 
(2.6). In Fig. 4 the particle positions are shown. The positions after one revolution 
of the inner ring have a curious appearance because of the patterns which form 
when a particle catches up to the particle in front of it in the adjacent outer ring. 
When the printer plots these points, it plots the points on one of the original radial 
lines, and the expected spiral of this line due to differential rotation is then clear. 

These results show that (2.6) does not degrade the orbits of particles significantly. 
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NMODEL= 40 N= 2000 H= 0.090 TIME= 9.1277E-01 

N ,,,,,,,,, 
1 

01 “rL”““‘s’.’ 
0.5 1 1.5 2 

RADIUS 

NMODEL= 320 N= 2000 H= 0 090 TIME= 7.30’21E+OO 

xx 
x x 

x 

x 

x 
x 

xX 
x 

13 

FIG. 3. The variation of density with radius for the ring configuration described in the text: (a) early 
stage; (b) just after one full rotation of the inner ring. Each symbol is the superposition of the density 
for the 100 particles in each ring and the absence of blurring shows accurate axial symmetry. 
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NMODEL= 40 N= 2000 H= 0.090 TIME= 9.1277E-01 

NMODEL= 320 N= 2000 H= 0.090 TIME= 7 3021E+OO 

N ,,,,LIII.III.~l~.~I 

‘-2 -1 0 1 

X POSITION 

FIG. 4. The particle configuration for the rings producing the density illustrated in Fig. 3: (a) early 
stage; (b) after one full rotation of the inner ring. 
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6. DISCUSSION AND CONCLUSIONS 

The simple technique described here prevents penetration without dissipation and 
linear and angular momentum are conserved. It has negligible effect on motion in 
a gravitational field and it does not degrade the simulation of shocks. The techni- 
que is clearly promising although there are a number of remaining questions 
concerning its application. 

The first of these is the correct way to combine (2.6) with an artificial viscosity. 
Since (2.6) makes the particle method more nearly like the representation of a fluid 
we are in the same situation as the user of finite difference methods. It may there- 
fore be possible to use some of the standard artificial viscosities which, for standard 
SPH, do not give good results [ 11. 

The second question concerns the ideal way to introduce the position-changing 
velocity into the thermal energy equation. The results described in this paper use 
the momentum velocity in the thermal energy equation which gives excellent energy 
conservation, but is inconsistent with the way position is changed since that deter- 
mines dp/dt and, in turn, du/dt. Because the results we have found are already quite 
satisfactory the precise answer to this last question may not be important. 
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